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Abstract—A machine learning model was used to detect target 

signals for an underwater lidar system operating in turbid water. 

For this system, scatter returns from the underwater environment 

and shot noise can create false alarms with signatures resembling 

true target peaks. A binary peak classifier model was implemented 

that classifies each peak in the lidar signal as a target or a non-

target. For a gray target positioned at 7 m downrange, ≥97% 

target detection accuracy was achieved at turbidities of c≤0.8 m-1, 

ranging from clear waters up to simulated open ocean conditions, 

and ≥85% target accuracy was achieved at simulated harbor-like 

turbidities of 1.0 m-1 ≤c≤1.2 m-1, where c is the attenuation 

coefficient of the turbid water. This approach can enhance the 

detection capabilities of a system already using frequency-domain 

discrimination techniques. 
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I. INTRODUCTION 

Lidar systems can be used underwater for range finding, 
proximity detection, and 3D imaging [1,2]. A common approach 
to 3D imaging is to emit a laser beam across an object of interest. 
Depth and brightness images are then formed, where each image 
pixel shows the object’s distance downrange and its reflective 
brightness at a certain point. This approach depends on correctly 
identifying the signal being reflected from the object in the lidar 
time-of-flight (ToF) return waveform. Figure 1 shows an 
example of a depth image that was collected from a recent test 
tank lidar experiment using a variety of water conditions [3], as 
well as an example ToF return waveform from a single pixel.  

A common challenge that arises when this approach to 3D 
underwater imaging is used in turbid water is that the receiver 
may see unwanted backscatter from particles in the water. This 
can create false peaks (both from scatter reflections and from 
scatter-induced shot noise) that make it hard to determine which 
peaks in the ToF-return correspond to the object [4]. Frequency-
domain discrimination techniques can be used to improve 
performance in turbid water [5], but detection can still be 
problematic without employing outside aid.  

This paper describes a machine learning (ML) approach to 
predicting which peaks are object returns, and which peaks are 
noise or scatter returns. The test tank experiment featured a gray 
3D target consisting of a stack of cylinders [3]. The ToF returns 
from scanning that target were used to train a Fine Gaussian 
Support Vector Machine (SVM) binary classifier that 
determines if a given peak is likely to be a target peak (“true 
peak”) or a scatter or noise peak (“false peak”). We tested this 
classifier on other ToF returns from the same experiment, and 
have found that at a target distance of 7 m, the ML model 

classifies peaks in clear and low-turbidity water (i.e. where the 
attenuation coefficient c was less than or equal to 0.8 m-1) with 
≥97% accuracy, and in turbid water (1.0 m-1 ≤c≤1.2 m-1) with 
≥85% accuracy. 

 

II. METHODOLOGY 

A. Underwater Lidar Data Set 

The underwater lidar data set is comprised of the ToF lidar 
returns collected while scanning a gray 3D target underwater. 

 

 

 
Figure 1. Underwater lidar depth image of a 3D target. Top: 

The gray target used for the experiment [3]. Middle: Clear-

water depth image of target. Bottom: Raw lidar time-of-flight 

return, with target peak and backscatter/noise peaks highlighted. 
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The object was positioned 7 m downrange of the scanner and 
varied in height from 0 to 20 cm [3]. Six scans were included in 
the data set, at six different water conditions. The water 
conditions ranged in turbidity from an attenuation coefficient of 
0.24 m-1 to 1.20 m-1

. Each scan was 350 x 350 pixels, so that the 
entire data set included 735,000 pixels. The time resolution of 
each ToF-return was 2.5 ns/sample, and each pixel included 
1000 samples.  

Importantly, the lidar system used a modulation of 500-1000 
MHz, so that frequency-domain discrimination was already 
being implemented. The use of this highpass waveform was 
intended to reduce the backscatter signal observed in the ToF 
return waveform. Consequently, the ML classifier was trained 
on a data set that was already effectively highpass filtered.  

B. Peak Data used for Training the Classifier 

To build the training set, we first extracted all major peaks 
from all 735,000 ToF-returns. This was done by smoothing the 
magnitude of the ToF return and using Matlab’s built-in 
“findpeaks” function. This typically resulted in 2-20 peaks per 
ToF return. Each peak was labeled as either a true peak or a false 
peak, based on the known location of the object. Each extracted 
peak record included the 100 time samples before the peak, the 
sample at the peak, and 300 time samples after the peak, for a 
total of 401 samples per peak record. In total, 3.1 x 106 peaks 
were extracted from the data set. From these, a training set of 
12,000 peaks and a testing set of 12,000 peaks were selected at 
random, each with 1,000 true peaks and 1,000 false peaks at each 
of the 6 turbidity levels.  

C. Features used by the Classifier 

Eleven feature extraction functions were created, each of 
which processed a peak record and outputted a scalar value 
quantifying that feature. When training the model, we used all 
feature values together as inputs for the model. The features are 
listed in Table 1 and included: endBeginningDifference, 
maxPeak, endMinusBeginningSums, peakHeight, 
smoothedSymmetry, symmetry, averageAfterPeak, 
averageAbsAfterPeak, peakWidth, avgAbsBeforePeak, and 
avgBeforePeak, all to be described below. Unless otherwise 
stated, each feature processed the magnitude of the smoothed 
peak record.  

 The endBeginningDifference feature is meant to find the 
consistency of the noise after the peak. For a true peak, the noise 
will tend to be fairly flat after the peak. The value is calculated 
by taking the average of points 200 – 400 (100 after the peak up 
to the end of the sample) and takes the sum of the difference of 
each point to that mean. 

The maxPeak feature aims to find if the target peak is the 
largest in the sample, and if not then by how much. It finds the 
largest peak within the sample and subtracts the target peak.  

 The endMinusBeginningSums feature acts the same way as 
endBeginningDifference, but instead of using the mean of the 
end, uses the mean of the first 50 points (ending 50 points before 
the sample), and subtracts the value at each point after 150.  

The peakHeight feature pulls out only the suspected peak’s 
value (at point 101) and returns its value. This function gauges 

whether a peak is a target peak or a backscatter peak solely 
based of off the magnitude of the peak.  

 The smoothedSymmetry function is trying to see to what 
extent the points are symmetrical around the peak itself. It 
smooths the data more than normal and returns the sum of the 
difference of each pair of points surrounding the target peak, up 
to 50 away. For example, it would take 𝑎𝑏𝑠(𝑓(100) −
𝑓(102)) + 𝑎𝑏𝑠(𝑓(99) − 𝑓(103)) + ⋯ ). This dataset is more 
smoothed than others.  

 The symmetry function acts the same as smoothedSymmetry 
but is not smoothed and reads up to 100 points away instead of 
50. 

 The averageAfterPeak function takes the average of all the 
samples after the suspected target sample and averages them.  

 The averageAbsAfterPeak feature returns the mean of the 
magnitude of all the points after the featured peak.  

 The peakWidth function Finds the nearest minimum to the 
left and right of the suspected target and adds the distances from 
each to the suspected target.  

 The avgAbsBeforePeak function takes the average of the 
absolute value of the first fifty samples and returns that value. 

The avgBeforePeak function takes the average of the first fifty 
samples and returns that value. 

 We used Matlab’s Classification Learner App [6] to train a 
model that used all features simultaneously to predict whether 
the 101st time sample in a peak record represented an object. The 
12,000 peak training data set was used for training, and the 
12,000 peak testing data set was used for testing. Multiple types 
of classifiers were tested, and a Fine Gaussian SVM model [7] 
was selected because it had the highest accuracy. 

 The function value distributions for each feature extraction 
function are shown in Figures 2-12. These figures plot a random 
sampling of the function values for peaks from each turbidity. 
Many functions have good separation between the true peak and 
false peak distributions for low turbidities (especially turbidity 
1), but the separation is not as apparent at high turbidities 
(especially turbidity 6). Figures 13-14 plot this same function 
value distribution data at turbidity 1 and turbidity 6. It can be 
seen that some functions do offer some separation at turbidity 6. 

 

Feature Highest Accuracy 

avgAbsBeforePeak 89.9% 

symmetry 88.6% 

smoothedSymmetry 88.2% 

averageAbsAfterPeak 86.0% 

averageAfterPeak 84.9% 

endMinusBeginningSums 84.1% 

avgBeforePeak 82.3% 

peakHeight 82.3% 

maxPeak 81.3% 

peakWidth 70.0% 

endBeginningDifference 60.4% 

Table 1. Function results of every predictive feature, and its 

corresponding accuracy. 



 

D. Comparison with a Baseline Detector 

A simple baseline system was used to detect true and false 
peaks for comparison sake against the ML system that we 
created. This system used the magnitude of the peak and the 
magnitude of the 200 samples after the peak to classify the peak. 
The system classified the peak as a true peak if the magnitude of 
the peak was at least four standard deviations above the mean of 
this record. As shown in Table 2, this classifier performed well 
in low turbidity, but did not do well in high turbidity. 

 
 

 

 

 

 

 

 

  

Figure 2. Function results of avgAbsBeforePeak. True peaks are on 

the left of the turbidity number and false peaks on the right. 

Figure 3. Function results of Symmetry. True peaks are on the left of 

the turbidity number and false peaks on the right. 

Figure 4. Function results of SmoothedSymmetry. Actual peaks are 

on the left of the turbidity number and false peaks on the right. 

Figure 5. Function results of averageAbsAfterPeak. Actual peaks are 

on the left of the turbidity number and false peaks on the right.  

Figure 6. Function results of AverageAfterPeak. Actual peaks are on 

the left of the turbidity number and false peaks on the right. 

Figure 7. Function results of endMinusBeginningSums. Actual peaks 

are on the left of the turbidity number and false peaks on the right. 



 

 

 

 

 

 
 

 

Figure 9. Function results of PeakHeight. Actual peaks are on the 

left of the turbidity number and false peaks on the right. 

Figure 10. Function results of maxPeak. True peaks are on the left 

of the turbidity number and false peaks on the right. 

Figure 11. Function results of peakWidth. True peaks are on the left 

of the turbidity number and false peaks on the right. 

Figure 12. Function results of endBeginningDifference. True peaks 

are on the left of the turbidity number and false peaks on the right. 

Figure 13. Function results from each classifier function running on 

Turbidity level 1. For each distinct color, points plotted left of center 

are false peaks, points plotted right of center are true peaks. 

 

Figure 14. Function results from each classifier function running on 

Turbidity level 6. For each distinct color, points plotted left of center 

are false peaks, points plotted right of center are true peaks. 

 

Figure 8. Function results of avgBeforePeak. True peaks are on the 

left of the turbidity number and false peaks on the right. 

 



III. RESULTS 

Figure 16 visualizes the output of the model on both a clear-
water (c=0.24 m-1) and a turbid-water (c=1.2 m-1) ToF return 
(corresponding to attenuation lengths of 1.7 to 8.4). The outer 
dashed purple vertical lines represent the maximum and 
minimum possible locations available for prediction (due to 
needing 100 samples before and 300 samples after). The 
remaining vertical lines indicate the sample at which a peak was 
detected. Red lines show peaks classified by the model as false 
peaks; green lines show peaks classified as true peaks. In this 
example, the actual target location was at sample #320. These 
examples were typical: peaks were well classified in clear water, 
while some false positives appeared in turbid water. As shown 
however, many false positives were near the correct location. 
Table 2 summarizes the accuracy of the model at each turbidity. 
The accuracy of the ML classifier was significantly better than 
the accuracy of the baseline detector, especially at high 
turbidities. 

Table 2. Peak Classifier Accuracy by Turbidity 

Performance of Peak Classifier Model  

Turbidity 
Attenuation 

coefficient 
Classifier Accuracy 

Baseline Detector 

Accuracy 

1 c=0.24 m-1 99.88% 93.80% 

2 c=0.4 m-1 98.68% 93.75% 

3 c=0.6 m-1 96.85% 92.20% 

4 c=0.8 m-1 97.78% 91.55% 

5 c=1.0 m-1 93.83% 67.85% 

6 c=1.2 m-1 84.80% 47.20% 

 

 

  

 

Figure 16. Example output of peak classifier. Top: Output for 

clear water (c=0.24 m-1): the true peak is clearly identified, and 

other peaks are correctly classified as false peaks. Bottom: 

Output for turbid water (c=1.2 m-1): several peaks near the 

actual target are classified as true peaks. False peaks are 

correctly classified. 

 

 

 

Figure 15. Plot of target profile using ToF returns processed by 

ML classifier. The profiles shown represent the average of 10 

slices across the target for each turbidity except the c=1.2/m 

case. The c=1.2/m profile was not plottable on this scale since 

the peaks classified as “true peaks” varied widely in location. 

 

 



IV. CONCLUSION 

This work will improve performance for underwater lidar 
systems, especially those that already implement frequency-
domain and other scatter-suppression techniques. The classifier 
works well for low turbidities and shows promise for use at high 
turbidities.  

Future work will extend the feature set with a focus on 
improving results at higher turbidities, specifically by including 
adjacent pixel information in the feature set.  

REFERENCES 

[1] Jaffe, J. S. (2014). Underwater optical imaging: the past, the present, and 
the prospects. IEEE Journal of Oceanic Engineering, 40(3), 683-700. 

[2] Caimi, F. M., & Dalgleish, F. R. (2013). Subsea laser scanning and 
imaging systems. In Subsea Optics and Imaging (pp. 327-352). 
Woodhead Publishing. 

[3] Illig, D. W., Lee, R., & Mullen, L. (2018). Image processing inspired 
technique for enhancing performance of the underwater modulated pulse 
laser system. Optical Engineering, 57(10), 107104. 

[4] Illig, D. W. (2016). Towards Enhanced Underwater Lidar Detection via 
Source Separation (Doctoral dissertation, Clarkson University). 

[5] Mullen, L. J., & Contarino, V. M. (2000). Hybrid lidar-radar: seeing 
through the scatter. IEEE Microwave magazine, 1(3), 42-48. 

[6] Mathworks Matlab. Classification Learner App. 
https://www.mathworks.com/help/stats/train-classification-models-in-
classification-learner-app.html  

[7] Jakkula, V. (2006). Tutorial on support vector machine (SVM). School 
of EECS, Washington State University, 37. 

 

 

https://www.mathworks.com/help/stats/train-classification-models-in-classification-learner-app.html
https://www.mathworks.com/help/stats/train-classification-models-in-classification-learner-app.html

