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Abstract—We present a new method of classifying previ-
ously unseen Android applications as malware or benign. The
algorithm starts with a large set of features: the frequencies
of all possible n-byte sequences in the application’s byte code.
Principal components analysis is applied to that frequency matrix
in order to reduce it to a low-dimensional representation, which
is then fed into any of several classification algorithms. We utilize
the implicitly restarted Lanczos bidiagonalization algorithm and
exploit the sparsity of the n-gram frequency matrix in order
to efficiently compute the low-dimensional representation. When
trained upon that low-dimensional representation, several classi-
fication algorithms achieve higher accuracy than previous work.

I. BACKGROUND

The Android operating system continues to gain market
share among smart phone users across the world. At the end
of 2013, it had reached over 50% market share in the United
States and Great Britain and over 70% in Germany and China
[1]. In all four countries, Android gained more than 4% market
share over the previous year. With an increase in market share
also comes an increase in the attention of malware developers.
There are hundreds of malicious applications in the official and
alternative Android marketplaces [2]. This work presents a new
way of detecting malicious Android applications, resulting in
higher accuracy than previous methods.

Our technique starts with n-gram frequencies, which can
be extracted from the raw data without any domain knowledge.
For example, the frequency of the 3-gram 3F:52:BA would
be the number of times that that 3-byte sequence occurred in
the byte code for the application. In contrast, domain-specific
features (e.g., user-trigger dependence relations [3]) require
manual effort to develop, as they vary significantly for differ-
ent malware. Domain-specific features highlight empirically
observed behaviors or patterns of specific types of malware,
whereas n-grams are raw, low-level features. Our primary
contribution is a new way to represent Android applications
for classification: applying dimensionality reduction on the n-
gram frequencies. The resulting low-dimensional representa-
tion is very useful for identifying malware, letting us achieve a
higher classification accuracy than Android work with domain-
specific features.

A. Malware Classification

Traditional methods for detecting malware rely upon recog-
nizing a specific signature that has been previously identified

as belonging to a specific, known malware. A limitation of
this approach is that it cannot recognize previously unknown
malware. In contrast, heuristic-based or machine learning
methods generalize from samples of malware and clean files,
allowing them to recognize previously unknown malware.

Each application is represented as a vector of feature
values, which can come from dynamic analysis or static
analysis. Dynamic analysis involves running the application
in a sandbox and recording information about its behavior,
such as battery and network usage [4]. Static analysis uses
features extracted without running the application, such as the
permissions that the application requests upon installation or
information about the control flow of the program (e.g., [2]).
Both types of analyses are useful and provide complementary
insights about applications’ behaviors. Our work uses static
analysis.

B. Related Work: General Security

Machine learning techniques have been widely adopted in
the computer security literature since the work by Lee et al.
[5]. Equipped with domain knowledge, the methods extract
domain specific features based on empirical observations of
malicious programs or traffic patterns.

For example, solutions described by Cova et al. [6] use
binary classification techniques to identify malicious Javascript
code on the web. The features they extracted from malicious
code include the presence of redirection and obfuscation.
Xie et al. [7] used a Bayesian network to infer abnormal
network traffic patterns. Besides classifying programs and
network traffic, learning-based security research also includes
database intrusion detection [8] and SMS/social network spam
detection [9].

Our classification method differs from these domain ex-
perts’ research in that our classification algorithm is performed
on straightforward features (namely n-grams) without any spe-
cific domain knowledge. We focus on developing fundamental
and general data processing and learning methods, as opposed
to the selection of specific domain features. Our high classi-
fication accuracy indicates the effectiveness of this domain-
independent feature approach for Android applications.

Using n-gram frequencies as features has been success-
ful in classifying malware in Windows’ portable executable
format (PE32) files [10, 11]. However, that research uses a



feature selection algorithm to pick only a few n-grams as the
features to pass along to the classification algorithm. Their
feature selection algorithm works by independently scoring
each feature, using mutual information or Fisher score with
respect to the class label. The highest scoring features were
then passed along to a classification algorithm.

Instead of individual feature selection, we use dimension-
ality reduction to process the n-gram frequencies and gener-
ate a d-dimensional representation of each application. This
improvement lets the algorithm exploit interactions between
features that the previously used feature selection algorithms
would miss because they score features independently from
one another. Furthermore, each of the d dimensions produced
by dimensionality reduction can encode information about
many original features. Thus, the d features produced by
dimensionality reduction will contain more information than
simply selecting d individual features and discarding all of the
information from the other n-gram frequencies.

C. Related Work: Android Malware

Researchers have applied both static and dynamic ap-
proaches to malware detection on Android devices. The ap-
proaches differ in the features extracted and the classification
algorithms employed, leading to varying degrees of success.
The data sets employed by the researchers were also of
different qualities, ranging from just a handful of malware
that the researchers created themselves up to data sets with
hundreds of examples pulled from live marketplaces.

Schmidt et al. [12] used a data set of ELF files. It consisted
of approximately 240 malware which targeted Linux systems
(i.e., not specifically designed for the mobile ARM architec-
ture), and less than 100 Linux system commands from an
Android device. They used static analysis to construct binary
features, one for each function called by any file in the data set.
That information was extracted using readelf. They applied
three classifiers (rule inducer, nearest neighbor, and decision
tree) to a few subsets of the features. All of their configurations
that achieved 80% or higher detection rate (i.e., true positive
rate) also suffered a false positive rate over 10%.

Burguera et al. [13] proposed the CrowdDroid system for
identifying a specific type of malware: repackaged malware.
Repackaged malware is created by taking a benign applica-
tion and repackaging it with additional malicious code. The
CrowdDroid approach uses dynamic features. A central system
collects the frequencies of several system calls from several
users running the application on different devices. It then uses
k-means clustering with k = 2 to cluster the results, with
the goal of separating the benign instances of the application
from the malicious (repackaged) instances. Their experiments
used only four author-created malware and two real malware.
While CrowdDroid successfully identified all of the author-
created malware, it produced a 20% false positive rate on one
of the two real malware (the more substantial application of
the two).

Shabtai et al. [14] also used a small number of fabri-
cated malware (i.e., four applications) to test their Andromaly
system, due to a lack of real malware at that time. They
used 88 hand-designed dynamic features, including memory
page activity, CPU load, SMS message events, network usage,

touch screen pressure, binder information, and battery infor-
mation, among others. They pared down the features using
the information gain and Fisher scores for each individual
feature, selecting the features with the best scores. Then they
applied several classifiers: decision trees, naı̈ve Bayes, Bayes
nets, histograms, k-means, and logistic regression. Even on a
synthetic data set, their best configuration—naı̈ve Bayes after
using Fisher score to select 10 features—still had over 10%
false positive rate, with approximately 88% accuracy.

Later research had the advantage of access to more actual
malware. Like Andromaly, Amos et al. [4] used hand-selected
dynamic features (e.g., memory, CPU, binder information), but
evaluated performance on a larger data set: 1330 malware and
408 benign applications. They compared random forests, naı̈ve
Bayes, multilayer perceptrons, Bayes nets, logistic regression,
and decision trees. As with the previously mentioned work,
their methods suffer from a high false positive rate: over 15%
for all of their configurations. Their accuracy was 95% on
new traces from applications included in the training set, but
no higher than 82% on traces from applications that were not
included in the training set.

Sanz et al. [15] used a simple feature set: the permissions
and features of the device that the application requests upon
installation. They are listed in the downloaded application’s
manifest, so these features are extracted with static analysis.
Their data set consisted of 357 benign and 249 malicious appli-
cations. They tried several classifiers: logistic regression, naı̈ve
Bayes, Bayes nets, support vector machines with polynomial
kernel, k-nearest neighbors, decision trees, random trees, and
random forests. As with other work, the false positive rate
remains stubbornly high: their false positive rate is never below
11%, and even that classifier only detects 45% of the malware.
The best overall accuracy was 86%, using random forests.

Sahs and Khan [2] tried a substantially different approach,
training a 1-class support vector machine on benign appli-
cations in order to detect malware as anomalies. They used
a custom kernel that combines permissions information with
control flow graph information, both of which come from
static analysis. However, their false positive rate is nearly 50%,
making their method untenable.

Wu et al. [16] report much better results—false positive
rate below 1% and accuracy of 98%—but they only report
on the training set error. Without evaluating on a testing set
or using cross-validation, the good results are likely due to
overfitting, instead of a model that generalizes well to unseen
malware.

Peng et al. [17] explored the use of different probabilistic
generative models for scoring the risk of different Android
applications. They used the permissions requested by the appli-
cation as the binary features (i.e., static analysis). Each model
estimates the probability that an application would request
those permissions. Each model is trained on several thousand
applications from the marketplace, which the authors assume
to all be benign. When a new application requests permissions
that have a low probability according to the model, it is flagged
as unusual or high risk. The probabilistic models range in
complexity from simple naı̈ve Bayes through a hierarchical
mixture of naı̈ve Bayes models. They used 378 malware
applications mixed with different subsets of the benign set



to calculate cross-validation error. The hierarchical mixture
of naı̈ve Bayes models performs the best, detecting 78% of
malware with a false positive rate of 4%. The simpler models
also do well, achieving close to the same results.

D. Receiver Operating Characteristics (ROC) Curve

For classifiers that produce probability estimates—e.g.,
“There is a 72% chance this application is malware”—instead
of just a yes/no decision, the aggressiveness of the overall
system can be adjusted without modifying the classifier itself.
To do this, one simply adjusts the probability threshold at
which an application is declared malware. When the threshold
is 0.0, everything is declared malware (i.e., the most aggressive
classifier). On the other extreme, when the threshold is 1.0,
nothing is declared malware. The default threshold is 0.5,
picking the most likely category according to the classifier.
This ability is important for malware classification because in
different situations, different levels of aggressiveness would be
appropriate. If one wants very high security, one might pick
an aggressive classifier that can detect all of the malware, but
also mistakenly flags several benign applications as malware
(i.e., high false positives). On the other hand, if the classifier
is used as part of a larger security suite, a less aggressive
classifier would be preferred, producing fewer false positives.

While there are several ways to measure the quality of
a classifier—accuracy, false positive rate, precision, etc.—the
receiver operating characteristic curve (ROC curve) illustrates
the trade off between false positives and detection rate as one
moves from a conservative classifier (i.e., nothing is malware)
to an aggressive classifier (i.e., everything is malware). (See
Figure 3 for examples of ROC curves.) One can examine the
curves in several different ways. The most concise is to cal-
culate the area under the curve (AUC), which summarizes the
quality of the classifier at all different levels of aggressiveness.
An AUC of 1.0 is optimal, representing a perfect classifier.

One can also examine specific points on the ROC curve
to find what fraction of malware can be detected—the true
positive rate or TPR—when limiting the false positive rate
(FPR) below some threshold. For example, one might want no
more than 2% FPR in a particular system, so looking at the
TPR value on the ROC curve when FPR=0.02 will estimate
the detection rate of such a system.

E. Summary of Related Work

Table I summarizes the results from previous work. The
table lists the TPR for different values of the FPR, along with
the AUC. When the ROC is not reported in the given work, the
closest FPR column is filled in. The best classifiers from each
publication that meet the FPR limit are reported, and the best
AUC is reported. Thus, the different columns may represent
different classifiers. Publications where all of the FPR values
were above 0.15 are omitted. As noted in Section I-C, there
are many factors that influence the results, such as the makeup
of the data set and whether or not applications as a whole are
classified (static analysis) or execution traces from applications
are classified (dynamic analysis). Thus, this table alone is an
oversimplification of the results, but it highlights the difficulty
in achieving decent detection rates at FPR of 0.02 or less. Our
methods, in contrast, can detect 91% of malware at FPR=0.02
(Section III-D).

II. METHODS

The most common features used in previous static analysis
work are the permissions that the Android application requests
upon installation. Our work explores a very different type of
feature: n-gram frequencies. We converted Android application
code (.apk) from the dex format to a .jar file using the Dare
tool1 [18]. The n-gram frequencies come from the resulting
Java byte code (i.e., .class files) of the applications, excluding
native libraries. The frequency of a particular n-gram in an
application is the sum of the frequencies for all the .class files
in the application.

Because there are too many n-grams to pass them directly
as features to a classifier (see Table II), we apply principal
components analysis (PCA) to obtain a low-dimensional rep-
resentation of each application [19]. Each of the d values in
that representation is a linear function of the original feature
vector for that application.

The n-gram frequency matrix has one row for each training
application and one column for each possible n-gram. Even
after removing n-grams that do not occur in the training
data, the matrix still has millions of columns. Thus, a basic
application of PCA to the n-gram frequency matrix would be
too inefficient. We employ two techniques to make the PCA
problem tractable.

First, we exploit the sparsity of the matrix in order to store
it in memory. While the original matrix is sparse (Section
III-A), it needs to be centered before applying PCA. That cen-
tered matrix is not sparse, so our program dynamically creates
a matrix multiplication function that is tailored to the frequency
matrix (i.e., a function object). That function computes the
product of the centered matrix and a vector argument without
needing to expand the uncentered, sparse matrix. Specifically,
let X be the (uncentered) frequency matrix. Then the centered
matrix Z is X − 1µ⊤, where µ is a column vector of the
column means of X and 1 is a column vector of ones. Thus, the
function object computes Zv for a vector v as Xv− (µ⊤v)1,
where µ⊤v is a scalar and X is sparse.

Second, we use the implicitly restarted Lanczos bidiag-
onalization algorithm (IRLBA) [20]. It provides a way to
efficiently compute an approximate, partial singular value
decomposition of the large n-gram frequency matrix. We only
need a partial singular value decomposition because only the
d most significant right singular vectors are needed to project
the data into d dimensions.

After obtaining the d-dimensional representation of each
application, we explored several classifiers to learn the differ-
ence between malware and clean files. Sections III-C and III-D
detail the results from those classifiers.

III. EXPERIMENTS

A. Data Set

We used a collection of 3869 Android applications, which
consists of 1433 malicious applications and 2436 benign ap-
plications. The malicious Android applications were collected
from the VirusShare repository2 and the Android Malware

1http://siis.cse.psu.edu/dare/
2http://virusshare.com/



TABLE I. SUMMARY OF RELATED WORK REPORTING MODERATE OR LOW FALSE POSITIVE RATES. TPR NUMBERS READ FROM A PLOT ARE

APPROXIMATE, INDICATED BY ≈.

Citation AUC TPR values for FPR ≤ x Limitations
x = 0.01 x = 0.02 x = 0.05 x = 0.10 x = 0.15

Schmidt et al. [12] - 0.77 - - 0.99 1.00
ELF files only
(system utilities, not APK applications)

Shabtai et al. [14] 0.913 - - ≈ 0.967 - 0.847 author-created malware
Sanz et al. [15] 0.920 - - - - 0.50
Peng et al. [17] 0.954 < 0.5 ≈ 0.59 ≈ 0.79 ≈ 0.87 ≈ 0.90

Genome Project3 [21]. The benign Android applications are
free, real-world applications collected from the Google Play
market, covering various application categories. These free
applications include different levels of popularity, as deter-
mined by the user rating scale. We used two existing malware
detection tools [22, 23] to scan the collected free applications.
Applications that did not trigger any alerts in those tools are
kept in the benign set.

The applications were partitioned into training and test sets
as follows. For the clean applications, a random 20% were
selected for the test set, with the remainder going into the
training set. The malicious applications were split based on the
malware family. For each family with just one application, that
application was randomly assigned to training or testing. For
all the other families, at least one application was assigned to
the test set. A few families of varying sizes were completely
held out of the training set, so we could evaluate the algo-
rithm’s accuracy on completely unseen malware families. For
each of the other malware families, 20% of the applications
were selected for the test set, with the remainder going into
the training set. There were 1948 benign and 1066 malicious
applications in the training set, and there were 488 benign and
367 malicious applications in the test set. Only the training
data was used for model selection, reserving the test data until
the final evaluation (Section III-D).

Exploiting the sparsity of the n-gram frequency matrix was
essential for efficient application of PCA. There are two kinds
of sparsity we exploited. First, some n-grams never occur in
the training data. Those columns are filled with zeroes, so they
are removed from the frequency matrix. Table II shows that the
fraction of columns that have any non-zero element decreases
drastically as n increases. For example, with n = 4 less than
half of one percent of the columns are used at all. Even after
removing the all-zero columns, the matrix is still sparse. We
found that the fraction of non-zero elements decreases slightly
as n increases, but remains close to 8% for each n (Table II).
This low density of non-zero elements is important for fitting
the matrix into memory.

B. IRLBA Results

Table III shows the running time of IRLBA for each
combination of n and d that we explored. The results are
from a system with a quad-core 2.53 GHz Intel Xeon CPU
(model E5630) and 48GB of RAM. Only the larger values of
n and d take more than an hour to run. Overall, d = 128
and n = 3 leads to the highest accuracy classifiers (Section
III-C). Thus, a little over two hours is sufficient to run IRLBA

3http://www.malgenomeproject.org/

TABLE II. SPARSITY OF THE n-GRAM FREQUENCY MATRIX. NUM.
n-GRAMS IS THE NUMBER OF DISTINCT n-GRAMS PRESENT IN THE

TRAINING DATA. NUM. NON-ZERO AND FRAC. NON-ZERO ARE THE

NUMBER OF NON-ZERO ELEMENTS IN THE FREQUENCY MATRIX AND THE

FRACTION OF ELEMENTS THAT ARE NON-ZERO, RESPECTIVELY.

n Num. n-grams Num. Non-Zero Frac. Non-Zero
2 64,486 27,702,199 0.0832
3 2,352,501 129,153,554 0.0828
4 14,324,759 257,692,827 0.0818
5 42,807,668 374,699,304 0.0803
6 86,571,071 450,483,143 0.0783
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Fig. 1. Scaled singular values of the n-gram frequency matrices.

and generate informative features from the n-gram frequency
matrix. This only needs to be done once during training, then
used to classify as many applications as needed.

Even after exploiting the sparsity of the frequency matrix,
the bottleneck of our algorithm is the RAM needed to perform
PCA using IRLBA. We ran the algorithm with a cap of 48GB
of RAM, and some of the values of n and d were halted after
exceeding that limit (Table III). There is likely room to improve
the memory usage, since we did not optimize the software as
part of this work. Instead, we evaluated the IRLBA package
for R as it comes off the shelf4. While the memory requirement
is a limitation of the algorithm, the PCA step does not need
to be performed often, so a cloud computing lease would be
a good option for performing this computation. Furthermore,
new training data can be incorporated without redoing PCA:
simply use the existing singular vectors to compute the d-
dimensional representation of the new training data points,
feeding the updated data set into the classifier for retraining.

The sum of the top d singular values returned from IRLBA
tells the amount of variance in the original data that is captured
when projecting to the d-dimensional representation of the
data. Figure 1 shows the singular values for the different values

4http://cran.r-project.org/web/packages/irlba/



TABLE III. RUNNING TIME (WALL CLOCK TIME) FOR IRLBA (HH:MM:SS). THE COLUMN INDICATES d AND THE ROW INDICATES n. BLANK CELLS

INDICATE COMBINATIONS OF n AND d THAT EXCEEDED THE MEMORY LIMIT.

n ↓ d → 2 4 8 16 32 64 128 256 512 1024
2 0:00:43 0:00:45 0:00:45 0:00:51 0:01:08 0:01:54 0:04:29 0:15:21 1:20:21 6:24:32
3 0:03:52 0:03:56 0:04:27 0:07:29 0:15:57 0:36:43 2:10:48 12:25:00 64:34:42
4 0:10:33 0:10:37 0:13:36 0:30:58 1:09:26 3:20:42
5 0:21:17 0:22:18 0:31:55 1:14:02 3:00:53
6 0:34:11 0:36:12 0:51:47

of n, normalized so that the highest value for each n is 1.0. For
all values of n, the first few singular values are much larger
than the others. For example, the fifth highest singular value
is less than 25% of the largest value, for each n. While a low
value of d will capture the majority of the variation in the data
set, that does not necessarily mean that low d will lead to good
classification. The next section includes an investigation of the
relationship between d and classifier accuracy.

C. Classification Results: Cross-Validation Measures

Running IRLBA produces one low-dimensional data matrix
for each combination of d (i.e., the number of principal
components used) and n. For each of those matrices, we
ran several classification algorithms, evaluating their 10-fold
cross-validation accuracy to pick the best values of n and d,
along with any other parameters specific to the classification
algorithm. This section examines that step, while Section III-D
evaluates the best classifier of each type on separate test data.

We use the receiver operating characteristic curve (ROC
curve) to evaluate the classifiers, comparing them based
on their area under the curve (AUC). We compared five
classifiers: support vector machines, random forests, naı̈ve
Bayes, k-nearest neighbors, and boosted decision trees
(J48 with Adaboost). We used the Weka implementation
of each classifier [24]; the specific respective classes
are weka.classifiers.{functions.SMO, trees.RandomForest,
bayes.NaiveBayes, lazy.IBk, and meta.AdaBoostM1 with
weka.classifiers.functions.supportVector.RBFKernel as
the kernel}. For support vector machines, we explored
values of C ∈ {10−3, 10−2, 10−1, ..., 103, 104} and
γ ∈ {2−1, 2−2, 2−3, ..., 2−10}, picking the best values
for each n and d based on the highest cross-validation AUC.
Similarly, for the random forests, we set the number of trees
to 16, 32, 64, 128, and 256, picking the best value for each
n and d. For k-nearest neighbors, we picked the best value of
k from 1 through 7.

Figure 2 illustrates the cross-validation AUC values for
each classifier and for each combination of n and d. All of
the algorithms except naı̈ve Bayes reach above 0.97. The best
overall AUC was 0.9885, attained by random forests with 256
trees, n = 3, and d = 128. This is higher than achieved in
previous work (Section I-C, Table I).

Of the five classifiers, there is a clear distinction between
naı̈ve Bayes and the other four classifiers. It is not surprising
that naı̈ve Bayes performed poorly, since it assumes inde-
pendence of the feature values given the classification. This
contrasts with the PCA transformation, which entangles many
of the n-gram counts by generating linear combinations of
those n-gram frequencies.

TABLE IV. CLASSIFIERS OF EACH TYPE WITH HIGHEST

CROSS-VALIDATION AUC.

Algorithm n d Other AUC
SVMs 2 512 C = 10, γ = 0.5 0.9820
Random Forests 3 128 trees=256 0.9885
Naı̈ve Bayes 2 16 0.8649
KNN 3 512 k=1 0.9795
Boosted Dec. Trees 3 128 0.9853

The high AUC for the other classifiers indicates that using
PCA on the n-gram frequencies produces informative features
for Android malware classification. Each of those classifiers
performs the worst with low d, generally increasing the AUC
with higher d until a point of diminishing returns around d =
128. Table IV lists the AUC and the parameters for the best
classifier of each type. These were the models used for test
set evaluation, except for k-nearest neighbors. For KNN, we
evaluate the n = 3, d = 128 model on the test set because it
is simpler than the best model (n = 3, d = 512) but achieves
an AUC only 0.0007 less.

D. Classification Results: Separate Test Set

After picking the best classifier of each type (Section
III-C), we evaluated their accuracies on our test set. We ran
three evaluations of the classifiers, using three different subsets
of the test data. They each use all the benign applications from
the test set, but they differ in which malware from the test set
are used. The “unfamiliar” evaluation only uses the malware
from families that were not represented in the training data.
The “familiar” evaluation uses the other malware (i.e., their
families were represented in the training data), and the “all”
evaluation uses all of the malware in the test set.

Our “all” data set is like the evaluations performed in
previous work, where the authors do not consider the families
of the malware. The results are presented at the top of Table
V, along with the best results from previous work (copied
from Table I). The random forest classifier performs the best,
both in terms of AUC and in the TPR at the different FPR
levels. Furthermore, the random forest improves upon previous
work by a substantial amount, particularly for FPR=0.01 and
FPR=0.02, where we can detect an additional 30% of the
malware when compared with previous work. For example,
at FPR=0.02, we can detect over 91% of the malware in our
test data set, whereas the previous best rate was 59% [17].
Evaluating the classifiers at low FPR levels is quite important
for this application: with thousands of applications in the
Android marketplace, a screening tool with a false positive
rate over 2% is still too high for practical use.

Not only does the random forest perform well, but KNN,
SVMs, and boosted decision trees all perform better than



TABLE V. EVALUATION OF CLASSIFIERS ON TEST DATA. RESULTS WITHIN EACH DATA SET ARE SORTED BY THE TPR AT FPR=0.01. THE BEST VALUE

IN EACH COLUMN FOR EACH DATA SUBSET IS SHOWN IN BOLD.

Data Set Algorithm AUC TPR values for FPR= x
x = 0.01 x = 0.02 x = 0.05 x = 0.10 x = 0.15

Peng et al. [17] 0.954 < 0.5 ≈ 0.59 ≈ 0.79 ≈ 0.87 ≈ 0.90
All Naı̈ve Bayes 0.8100 0.3733 0.4005 0.5068 0.5804 0.6213

KNN 0.9730 0.7657 0.8093 0.9019 0.9373 0.9510
SVMs 0.9670 0.7793 0.8093 0.8638 0.9183 0.9482
Boosted Dec. Trees 0.9700 0.8229 0.8338 0.8856 0.9264 0.9510
Random Forests 0.9850 0.8638 0.9101 0.9428 0.9564 0.9619

Familiar Naı̈ve Bayes 0.8580 0.4599 0.4878 0.6237 0.6969 0.7247
SVMs 0.9840 0.8711 0.8920 0.9199 0.9721 0.9791
KNN 0.9920 0.8955 0.9094 0.9686 0.9756 0.9861
Boosted Dec. Trees 0.9890 0.9477 0.9477 0.9547 0.9686 0.9756
Random Forests 0.9930 0.9582 0.9686 0.9756 0.9791 0.9826

Unfamiliar Naı̈ve Bayes 0.6370 0.0625 0.0875 0.0875 0.1625 0.2500
KNN 0.9040 0.3000 0.4500 0.6750 0.8000 0.8250
Boosted Dec. Trees 0.9030 0.3750 0.4250 0.6375 0.7750 0.8625
SVMs 0.9080 0.4500 0.5125 0.6625 0.7250 0.8375
Random Forests 0.9540 0.5250 0.7000 0.8250 0.8750 0.8875

the best previous work. The fact that all of these classifiers
perform well indicates that the features upon which they are
trained—n-grams compressed through PCA—contain useful
information for classifying Android malware. Thus, our work
demonstrates that Android malware exhibit some low-level
similarities that can be exploited to recognize other malware.

When we break up the malware into familiar and unfamiliar
sets, the classifiers perform better on the familiar subset (Table
V). While this is not surprising, the results highlight the
importance of evaluating malware classifiers on unfamiliar
malware families, an evaluation that has not been done in
previous work. This is important because the unfamiliar subset
best simulates the situation of real interest: the classifier needs
to detect malware that have not yet been created, including
those from families that have not yet been created.

The random forest’s performance on unfamiliar mal-
ware is better than the previous best performance on famil-
iar/unfamiliar combined (like our “all” configuration). At the
the FPR=0.02 level, we can detect 10% additional malware,
despite the more challenging test set. The detection rate of
70%, although better than previous work, leaves room for
improvement. Future work will include augmenting the n-
grams with other features such as permissions bits, providing
the classifier with complementary information about the appli-
cations. Our preliminary results in this area indicate that such
combinations can significantly increase the malware detection
accuracy even beyond our contributions in this work.

IV. SUMMARY

We presented a new method for classifying Android ap-
plications as malicious or benign that is more accurate than
previous work. The method extracts Java byte code from the
Android application, then computes the n-gram frequencies of
that byte code. The frequency matrix is passed through PCA,
which can be efficiently performed using a combination of
IRLBA and sparse matrix representations. The output of PCA
is then fed to a classifier, which learns to distinguish between
malicious and benign applications.

We found that our new feature set—features produced
by using PCA on the n-gram frequency matrix—is very

informative. In particular, several classification algorithms used
those features to achieve AUC values of 0.98 or higher on
cross-validation data; all of those scores are higher than found
in previous work. We also computed the AUC on testing data
where the malware is from families that were not used in
training. The the 0.954 AUC that the random forest earns on
that data provides evidence that it will perform well on new
malware families.
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Fig. 2. The cross-validation AUC for each type of classifier.
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Fig. 3. The ROC curve for each test data subset: true positive rate (TPR) versus false positive rate (FPR). The left column shows the full curves, while the
right column magnifies the top left corner of the curves.


